EFFECTIVE APPLICATIONS OF THE R LANGUAGE

London 13th - 15th September

Modelling Boiler Breakdown using Deep Learning Algorithms

Timothy Wong

Data Scientist, Centrica plc

Who we are?

EARL 2016

'Centrica is an international energy and services company. Everything we do is focused on satisfying the changing needs of our customers.'

Timothy WONG – Data Scientist

https://uk.linkedin.com/in/timothy-wong-7824ba30

Problem

- We know how many boiler breaks down on each day when customers decide to inform us
 - Can we model historical trends?
 - If so, can we make inference to the past/future?

Why Neural Network?

- Non-parametric method
- Do not assume underlying model structure
- Learns complex behaviour

Neural Network

Artificial Neural Network (1)

- ANN is a mathematical model based on biological brains
 - Each neuron has multiple inputs and multiple outputs
 - Non-linear activation function
 - ANN models normally contains thousands / millions of parameters

Artificial Neural Network (2)

$$y = f\left(\sum_{i=1}^{M} w_i x_i\right)$$

... where *y* is one of the neuron outputs

Pick an non-linear activation function...:

EARL 2016

Artificial Neural Network (3)

Timothy WONG – Data Scientist

Artificial Neural Network (4)

- A 'classic' neural net:
 - Has multiple input neurons
 - Has multiple layers of *fully-connected* hidden neurons
 - Has at least one output neuron
 - Always forward-feeding (also called MLP: <u>Multi-Layer Perceptron</u>)

Artificial Neural Network (5)

- It is "deep learning"
 - Defined as multiple processing layers of non-linear relationships
- Neural nets can process regression or classification problems
- It's very common in handling complex non-linear problems.

Artificial Neural Network (6)

EARL 2016

Time Series Decomposition (Multiple Seasonality)

EARL 2016

Artificial Neural Network (7)

EARL 2016

Artificial Neural Network (8)

Always starts with random seed

- Gradient descent = locally optimal
- Therefore results are not always reproducible
- ANN is a black box system
 - Regression coefficient & *p*-values do not exist !
 - Difficult to extract useful insight from model weights
- Long training time

EARL 2016

Garson's Algorithm

EARL 2016

Recurrent Neural Network (1)

- Neural nets can be further adapted to deal with time series
 - Time series implies data must be presented in the correct sequence (i.e. not possible to flip observations)

• So far the concept of time is not yet present in Neural Nets

- i.e. in MLP you can flip the sequence of observations and still achieve the same model theoretically
- Solution = Recurrent Neural Network (RNN)
- Elman/Jordan type recurrent networks
 - Good for short term memory (i.e. state at time t depends on t 1)
 - LSTM network for longer term lag effect

EARL 2016

Recurrent Neural Network (2)

• RNN is a special variant in neural net

- It knows how to remember what happened at previous time step.
- To rephrase: it has feedback loops (Step t is dependent on t 1)

Recurrent Neural Network (3) Elman Network

• *Hidden* neurons relate to the previous state

Recurrent Neural Network (4) Unfolding RNN: "Back-Propagation Through Time (BPTT)"

Elman network:

Turning temporal relationship into forward-feeding network using BPTT

<u>Elman Network</u>

EARL 2016

Recurrent Neural Network (5) Elman Network

Test period has 609 rows (15%)

Recurrent Neural Network (6) Jordan Network

<u>Output</u> neurons relate to the previous state

Recurrent Neural Network (7) Jordan Network

* Training period has 3377 rows (85%) Test period has 609 rows (15%)

EARL 2016

Date

Merging Predictions (1)

- Models can be merged using weighted average
- Weight of each model is penalised according to the amount of error it makes at each step
 - Exponential decay rate "η"
- This implies you can deploy as many models as you like!
 - Aggregating algorithm will select the best for you.

EARL 2016

Merging Predictions (2)

- Determine learning rate η
- Initialise equal weights for all models $n = 1,2,3 \dots N$ at time t = 1
- FOR $t = 1,2,3 \dots T$
 - FOR model $n = 1,2,3 \dots N$
 - Observe model *n*'s prediction (γ_t^n) at time *t*
 - Compare γ_t^n with actual outturn (ω_t)
 - Model *n* suffers error $\lambda(\gamma_t^n, \omega_t)$ at time *t* (e.g. squared error)
 - Apply exponential factor to the weight at previous time step t 1

$$w_n^t = w_n^{t-1} \times e^{-\eta \lambda(\gamma_t^n, \omega)}$$

• Normalise all weights to avoid loss of computer precision

$$\sum_{n=1}^{N} w_n^t = 1$$

END FOR
FND FOR

EARL 2016

Merging Predictions (3)

* Training period has 3377 rows (85%)
Test period has 609 rows (15%)

EARL 2016

Date

Merging Predictions (4) Assess models by measuring cumulative error

* Training period has 3377 rows (85%) Test period has 609 rows (15%)

EARL 2016

Merging Predictions (5) Weights analysis

- No model is always the best model
 - Some model might perform better in particular conditions (i.e. Switching is required)
 - Aggregating algorithm does it automatically by weighting all available models based on recent performance

EARL 2016

Overall Summary

	Mean Squared Error (MSE)		Pearson's correlation coefficient	
	Training	Test	Training	Test
MLP (30,25,10)	0.0073133	1.67828	0.9787	0.9359
Elman (30,25,10)	0.0068782	1.53291	0.9825	0.9477
Jordan (40)	0.0211193	1.56392	0.9439	0.9245
AA	0.0051921	1.54887	0.9852	0.9466

* Training period has 3377 rows (85%)

Test period has 609 rows (15%)

Possible Improvements

- Minor tweaks
 - More neuron / more iteration
 - Sliding time window
- Use different neural net variants
 - e.g. LSTM
- Deeper model on CUDA-capable GPU device
- Customise topology

EARL 2016

Customised Topology (1)

128 224 dense dense 192 192 128 Max 2048 2048 Max pooling Max 128 pooling pooling of 4 48

AlexNet (2012)

Customised Topology (2) VGG-16 (2014)

EARL 2016

Alternative Uses

- Predictive modelling
 - Multi-seasonal time series data:
 - Insurance claims
 - Engineer demand
 - Energy consumption
 - Call agent scheduling
 - ... etc.
- Classification problem

EARL 2016

Useful Resources (1)

- R package: RSNNS <u>https://github.com/cbergmeir/RSNNS/tree/master/demo</u>
- Live neural net demo <u>http://playground.tensorflow.org</u>

The End - Thanks!

