
Using Linear Programming for 
Route Planning and Job Scheduling

Timothy Wong CStat CEng MBCS

Senior Data Scientist, Vodafone

timothywong731.github.io

5th September 2024
Brighton, UK

https://timothywong731.github.io/


Who am I
Timothy (Tim) is a professional Data Scientist with over 
ten years experience in big data, machine learning and 
analytics applications. He previously led the Data 
Science function at a large energy company in the UK. 
His experience spans across multiple sectors including 
energy, telecommunications, defence and national 
security. Tim is professionally qualified as a Chartered 
Statistician (CStat) as well as a Chartered Engineer 
(CEng).

I hosted talks at:

• EARL 2016, 2017 and 2019 (London)

• USER 2017 (Brussels), 2018 (Brisbane)

• ERUM 2018 (Budapest)

• … and more ☺



Resource Allocation

• There’s a number of jobs requiring fulfilment

• There’s a number of resources capable of 
fulfilling those jobs

• We need to allocate resources to jobs, efficiently!

Job

Resource

Legend

Starting/finishing point



Optimisation Problem(s)

• We aim to fulfil as many jobs as possible

• Resources must start and end at the same location

• Certain jobs may have higher priority over the others

• Minimise travel distance, or time



Knapsack Problem

• Maximise value in the knapsack

Max 10kg

£40

5kg

£8

3kg

£10

4kg

£60

6kg

?

£70

8kg

£5

2kg

𝐿𝑒𝑡 𝐼 = total number of items
𝑣𝑖 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑡ℎ𝑖𝑡𝑒𝑚

𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑡ℎ 𝑖𝑡𝑒𝑚

𝑥𝑖 = 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡ℎ 𝑖𝑡𝑒𝑚 

𝑀𝑎𝑥. 𝑧 = ෍

𝑖=1

𝐼

𝑣𝑖𝑥𝑖

𝑠. 𝑡.
(1) 𝑥𝑖 ∈ 0,1 ∀𝑖 = 1,2,3, … , 𝐼

(2) ෍

𝑖=1

𝐼

𝑤𝑖𝑥𝑖 ≤ 10 ∀𝑖 = 1,2,3, … , 𝐼



Knapsack Problem

• Maximise value in the knapsack

Max 10kg

£40

5kg

£8

3kg

£10

4kg

£60

6kg

?

£70

8kg

£5

2kg

𝐿𝑒𝑡 𝐼 = total number of items
𝑣𝑖 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑡ℎ𝑖𝑡𝑒𝑚

𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑡ℎ 𝑖𝑡𝑒𝑚

𝑥𝑖 = 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡ℎ 𝑖𝑡𝑒𝑚 

𝑀𝑎𝑥. 𝑧 = ෍

𝑖=1

𝐼

𝑣𝑖𝑥𝑖

𝑠. 𝑡.
(1) 𝑥𝑖 ∈ 0,1 ∀𝑖 = 1,2,3, … , 𝐼

(2) ෍

𝑖=1

𝐼

𝑤𝑖𝑥𝑖 ≤ 10 ∀𝑖 = 1,2,3, … , 𝐼

Maximise total value

Item can either be assigned (1) or not (0)

Sum of weight cannot exceed 10 kg



Knapsack Problem



Knapsack Problem

• Adapt this into our business context…

£££

2h

£

1h

££

1.5h

£££

3h

££££

5h

£

0.5h

Max 7h

• Works only if there’s 
only one resource

• Doesn’t figure out 
the order of the jobs

• Doesn’t address the 
starting / finishing 
point

• Can allocate jobs to 
resource

• Can maximise 
efficiency



Bin Packing Problem

• Pack items into least number of bins

Max 10kg each

5kg

3kg

4kg

6kg 8kg

2kg

𝐿𝑒𝑡 𝐼 = total number of items
𝐽 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠

𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑡ℎ 𝑖𝑡𝑒𝑚

𝑥𝑖𝑗 = 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡ℎ 𝑖𝑡𝑒𝑚

𝑦𝑗 = 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ𝑏𝑖𝑛

𝑀𝑖𝑛. 𝑧 = ෍

𝑗=1

𝐽

𝑦𝑗

𝑠. 𝑡.

(1) 𝑥𝑖𝑗 ∈ 0,1
∀𝑖 = 1,2,3, … , 𝐼
𝑗 = 1,2,3, … , 𝐽

(2) 𝑦𝑗 ∈ {0,1} ∀𝑗 = 1,2,3, … , 𝐽

(3) ෍

𝑖=1

𝐼

𝑤𝑖𝑥𝑖𝑗 ≤ 10𝑦𝑗 ∀𝑗 = 1,2,3, … , 𝐽

(4) ෍

𝑗=1

𝐽

𝑥𝑖𝑗 = 1 ∀𝑖 = 1,2,3, … , 𝐼

?



Bin Packing Problem

• Pack items into least number of bins

Max 10kg each

5kg

3kg

4kg

6kg 8kg

2kg

𝐿𝑒𝑡 𝐼 = total number of items
𝐽 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠

𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑡ℎ 𝑖𝑡𝑒𝑚

𝑥𝑖𝑗 = 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡ℎ 𝑖𝑡𝑒𝑚

𝑦𝑗 = 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ𝑏𝑖𝑛

𝑀𝑖𝑛. 𝑧 = ෍

𝑗=1

𝐽

𝑦𝑗

𝑠. 𝑡.

(1) 𝑥𝑖𝑗 ∈ 0,1
∀𝑖 = 1,2,3, … , 𝐼
𝑗 = 1,2,3, … , 𝐽

(2) 𝑦𝑗 ∈ {0,1} ∀𝑗 = 1,2,3, … , 𝐽

(3) ෍

𝑖=1

𝐼

𝑤𝑖𝑥𝑖𝑗 ≤ 10𝑦𝑗 ∀𝑗 = 1,2,3, … , 𝐽

(4) ෍

𝑗=1

𝐽

𝑥𝑖𝑗 = 1 ∀𝑖 = 1,2,3, … , 𝐼

?

Minimise the number of bins used

Item can either be assigned (1) or not (0)

Bins can either be assigned (1) or not (0)

Total weight of each bin cannot exceed 10 kg

All items must be assigned



Bin Packing Problem



Bin Packing Problem

• Put this into context again…

Max 10kg each

5kg

4kg

6kg 8kg

2kg3kg

• Still doesn’t figure 
out the order of the 
jobs

• Doesn’t address the 
starting / finishing 
point

• Doesn’t handle 
value of the jobs

• Now it can handle 
multiple jobs and 
multiple resources!



Travelling Salesman Problem (TSP)

• Find out the shortest path to visit each city exactly once and 
return to the original city

City

City

City

City
City

City



Multiple TSP

• Similar to TSP but with 
multiple salesmen.

City

City

City

City

City

City

City

City

City
City

City

City

• Doesn’t take into 
account the duration 
of jobs / resource 
capacity

• Starting point not 
fixed

• Order of jobs

• Completes a circuit



Job Scheduling and Route Optimisation

4h

1h

0.5h

2h

0.5h

1h

0.5h

1h

1.5h

Max 7h
0800-1500

Max 5h
1200-1700

Max 8h
0900- 1700

0.5h

0.1h

0.2h

1h

0.5h

2h

0.1h
0.3h

0.5h

0.2h

0.2h

0.3h



Job Scheduling and Route Optimisation

i3

i2

i4

i1
k1

x1,2,1=1

x2,3,1=1

X3,4,1=1

X4,1,1=1



Job Scheduling and Route Optimisation
Minimise total cost (eg. time)

Allocation vector

Total travel and job costs must not exceed agent capacity

Cannot revisit the same job

Every worker must leave home

Every worker must come back home

Every worker must leave the job after attending it

Exactly one worker goes to each job

Exactly one worker leaves each job

Ensure no subtour

i3

i2

i4

i1
k1

x1,2,1=1

x2,3,1=1

X3,4,1=1

X4,1,1=1



Notebook Example
https://timothywong731.github.io/scheduling/ 

https://timothywong731.github.io/scheduling/


Q&A

Timothy Wong CStat CEng MBCS

Senior Data Scientist

timothy.wong@hotmail.co.uk

@timothywong731

timothywong731.github.io 

linkedin.com/in/timothywong731

Today’s notebook example

Using Linear Programming for Route Planning and Job Scheduling
https://timothywong731.github.io/scheduling/ 

https://timothywong731.github.io/scheduling/

	Slide 1: Using Linear Programming for Route Planning and Job Scheduling
	Slide 2: Who am I
	Slide 3: Resource Allocation
	Slide 4: Optimisation Problem(s)
	Slide 5: Knapsack Problem
	Slide 6: Knapsack Problem
	Slide 7: Knapsack Problem
	Slide 8: Knapsack Problem
	Slide 9: Bin Packing Problem
	Slide 10: Bin Packing Problem
	Slide 11: Bin Packing Problem
	Slide 12: Bin Packing Problem
	Slide 13: Travelling Salesman Problem (TSP)
	Slide 14: Multiple TSP
	Slide 15: Job Scheduling and Route Optimisation
	Slide 16: Job Scheduling and Route Optimisation
	Slide 17: Job Scheduling and Route Optimisation
	Slide 18: Notebook Example
	Slide 19: Q&A

